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formations with two arbitrary complex-proportional Weyl spinors on N = 1 supersymmet-

ric type IIB strings backgrounds with all R-R F1, F3, F5 and NS-NS H3 fluxes turned on

using SU(3) structures. The equations are generalizations of the ones found for specific

relations between the two spinors by Grana, Minasian, Petrini and Tomasiello in [1] and

by Butti, Grana, Minasian, Petrini and Zaffaroni in [2]. The general equations allow to

study systematically generic type IIB backgrounds with N = 1 supersymmetry. We then

explore some specific classes of flows with constant axion, flows with constant dilaton, flows

on conformally Calabi-Yau backgrounds, flows with imaginary self-dual 3-form flux, flows

with constant ratio of the two spinors, the corresponding equations are written down and

some of their features and relations are discussed.
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1. Introduction

The gauge/gravity duality [3 – 5] together with flux compactifications in string theories

and powerful tools in supersymmetric gauge theories provide crucial insight into both the

background geometries of strings and the nonperturbative dynamics of gauge theories. In

this note, we write down general and explicit equations which solve the supersymmetry

transformations and which allow to study systematically N = 1 supersymmetric type IIB

strings backgrounds with all F5, F3, F1 and H3 fluxes turned on using SU(3) structures. We

then explore the backgrounds for possible types of flows in relation to the components of the

fluxes. This is useful in scanning the backgrounds for new supergravity solutions and dual

gauge/gravity theories, in studying flux compactifications with hierarchy of scales [6] and

with stabilized moduli [7], in constructing suitable cosmological models [8, 9] which might

allow to probe stringy signatures left over from the early universe (see [10] for a review

for instance), in studying mirror symmetry in flux compactifications (see [11, 12, 1] for
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instance), and in looking for stable flux vacua which break supersymmetry. The equations

we present could be used to study specific flows on type IIB backgrounds with N = 1

supersymmetry with appropriate metric and flux ansatz.

Compactifications of type II strings over Calabi-Yau manifolds preserve N = 2 super-

symmetry. On the other hand, gauge/gravity theories which exhibit physically interesting

phenomena such as nonconformal renormalization group flow, confinement and chiral sym-

metry breaking have reduced N = 1 supersymmetry. Such theories can be engineered by

adding D-branes which turn on fluxes on Calabi-Yau backgrounds. Once fluxes are turned

on, the background geometry backreacts and develops torsion and the compactification

generically becomes non-Calabi-Yau. One of the difficulties in dual gravity approaches

to study QCD or when looking for supergravity flows suitable for modeling cosmological

scenarios is a lack of good understanding of strings on such backgrounds. For early work

on strings with torsion, see [13, 14]. In the last five years, group structures have been used

to deal with supergravity backgrounds with torsion which preserve N = 1 and N = 2 su-

persymmetries. See [1, 2, 12, 15 – 19] for instance. When the extra six dimensional space of

type II strings is compactified over a generalized Calabi-Yau with group G-structures, the

components of the torsion and the fluxes fall in representations of G. The supersymmetry

conditions translate into constraints on the balance among the components of the fluxes,

the torsion, the running of the dilaton and the warp factor decomposed and organized

representation by representation such that the appropriate number of supersymmetries is

preserved. The equations which solve the constraints can be efficiently used to study the

backgrounds.

Type IIB theory has two Majorana-Weyl spinors of the same chirality. In order to

preserve N = 1 supersymmetry, only one covariantly constant spinor is necessary. In flux

compactifications with SU(3) structures, there is one globally defined SU(3) singlet spinor

on the extra 6-d space which can be arranged to be covariantly constant with respect to

a Levi-Civita connection containing torsion and the fluxes included.1 Let us denote the

positive chirality component of the SU(3) singlet spinor in 6-d by η+. Let us also denote

the positive chirality 6-d components of the two Majorana-Weyl 10-d spinors by η1
+ and η2

+.

The two spinors η1
+ and η2

+ are then complex-proportional to the globally defined singlet

spinor η+ and to each other on backgrounds with N = 1 supersymmetry. The relations

between these spinors can be expressed in terms of two complex parameters α and β which

are functions of the coordinates on the extra 6-d space as

η1
+ =

1

2
(α + β)η+, η2

+ =
1

2i
(α − β)η+. (1.1)

The parameters α and β are tied to the components of the fluxes which are turned on,

the dilaton, the warp factor, and the torsion while N = 1 supersymmetry is preserved.

The cases of α = 0, β = 0, β = ±α or β = ±iα are special because the supersymmetry

transformations simplify considerably and have been extensively studied, see [20, 1] for

instance for discussion.

1The 4-d spacetime is taken to be conformally flat with a warp factor which is a function of the coordi-

nates on the extra 6-d space.
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Figure 1: Spinors parameters space. The parameters α and β define the relations between the two

complex-proportional Weyl spinors and the SU(3) invariant spinor. The curved line with both the

magnitude and the phase of β changing and the horizontal line with the magnitude of α changing

show an example of a generic flow in the spinors parameters space. The phase of α is taken to be

constant in this figure. The angle θ shows the phase between α and β and the dashed line shows

the magnitude of β for the point P . The magnitudes of α, β and θ are tied to the components of

the fluxes, the torsion, the running of the dilaton and the warp factor. The equations we present

here could be used to study flows systematically in the whole parameters space.

Here, we present the general equations which solve the supersymmetry transformations

and which accommodate complex-proportional Weyl spinors with arbitrary magnitudes

and phase between them. The equations generalize the ones found for specific relations

between the spinors by Grana, Minasian, Petrini and Tomasiello (GMPT) in [1] and by

Butti, Grana, Minasian, Petrini, and Zaffaroni (BGMPZ) in [2]. The decomposition of the

equations falls in 1 ⊕ 1, 8 ⊕ 8, 6 ⊕ 6̄ and 3 ⊕ 3̄ representations of SU(3). The ones in the

1 ⊕ 1, the 8 ⊕ 8 and the 6 ⊕ 6̄ sectors are the same as in [1]. The 3 ⊕ 3̄ sector involves the

equations which govern the running of the dilaton, the warp factor and all the fluxes and

that is where we present new and general equations which together with the equations in

the 1⊕1, the 8⊕8 and the 6⊕ 6̄ sectors allow to scan the moduli space of IIB backgrounds

with SU(3) structures and N = 1 supersymmetry. We reproduce the equations obtained

with a gauge choice in [1] as a specific case of the general equations with a constant phase

of zero between α and β, or equivalently a constant phase of π/2 between the two spinors

η1
+ and η2

+. Figure 1 schematically shows the (α, β) spinors parameters space.

Our initial motivation for investigating these backgrounds was because corrections

to the anomalous mass dimension on the gauge theory side in the Klebanov-Strassler

throat [21], where type IIB string theory with N D3- and M D5-branes on AdS5 × T 1,1

background is dual to N = 1 supersymmetric SU(N+M)×SU(N) gauge theory with bifun-

damental chiral superfields and a quartic tree level superpotential in four dimensions, lead

to supergravity flows with running dilaton and generic relations between the two spinors

or require turning on the F1 flux [22].

The organization of this article is as follows. We start with considering backgrounds

with fluxes and metric which preserve 4-d Poincare invariance and a review of the super-

symmetry transformations and the decomposition of the fluxes and the torsion in SU(3)

representations in [1]. We then present the general equations which solve the supersymme-

try transformations in the whole (α, β) parameters space and with all fluxes turned on. The
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independent set of relations will be explicitly written for the fluxes, the torsion, and the

running of the dilaton and the warp factor in terms of the spinors parameters. We continue

with considering some specific classes of flows in which the backgrounds are conformally

Calabi-Yau, flows with imaginary self-dual 3-form flux, flows with constant axion, flows

with constant dilaton, flows with constant ratio of the two spinors and the corresponding

equations are written down.

Relations among the fluxes, the dilaton, the warp factor and the background geometry,

some of which are familiar, follow and are proved using the equations. For instance, the flux

and the torsion components in the singlet representation (the ones in the (0, 3) and (3, 0)

forms) cannot balance each other and the singlet components of the 3-form fluxes must

vanish identically. Flows with constant axion, constant dilaton and nonconstant warp factor

are conformally Calabi-Yau. Conformally Calabi-Yau flows have imaginary self-dual 3-form

flux. Flows with imaginary self-dual 3-form flux have primitive 3-form fluxes. Flows with

imaginary self-dual 3-form flux have constant dilaton-axion coupling coefficient τ = ie−Φ +

C0. Therefore, for instance, flows with imaginary self-dual 3-form flux and constant axion

have constant dilaton. Flows with imaginary self-dual 3-form flux and constant dilaton

have constant axion. Conformally Calabi-Yau flows with constant axion have constant

dilaton. Flows with constant axion and nonconstant dilaton have nonprimitive 3-form

flux. Flows with constant dilaton and nonconstant axion have nonprimitive 3-form flux.

The independent equations are summarized in appendix A.

2. Supersymmetry transformations

In this section, we make a brief review and write the supersymmetry transformations

in terms of component fields in SU(3) representations obtained in [1]. The backgrounds

we want to study are type IIB with the dilaton Φ, NS-NS 2-form potential B2 and the

corresponding 3-form flux H3 = dB2, R-R 0-, 2- and 4-form potentials C0, C2 and C4 [23].

Let us define the (modified) R-R fluxes,

F1 = dC0, F3 = dC2 − C0H3, F5 = dC4 − H3 ∧ C2, (2.1)

where we need to impose that the 5-form flux be self-dual and write F̃5 = (1 + ⋆)F5. Type

IIB theory contains two fermions: a gravitino which is denoted by ψ and a dilatino which

is denoted by λ. We work with type IIB action in string frame with the string coupling

absorbed in the dilaton.

For compactifications preserving four dimensional Poincare invariance such that

R(1,9) → R(1,3) × Y and Spin(1, 9) → Spin(1, 3) ⊗ Spin(6), we can write the 10-d met-

ric as

ds2
10 = e2A(y)dxµdxµ + ds2

6(y), (2.2)

where x denotes the 4-d coordinates on R(1,3), y denotes the coordinates on the extra 6-d

manifold Y , and A(y) is the warp factor which depends only on the coordinates in the extra

space. Our notation is such that uppercase indices M , N , · · · run over all the 10-d coordi-

nates, lowercase indices m, n, · · · run over the extra 6-d space coordinates and take values 1
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to 6, and the indices µ, ν, · · · run over the 4-d spacetime coordinates. In order to preserve 4-

d Poincare invariance, all the fluxes F1, F3, H3 and the F5 part of the self-dual F̃5 have only

internal (extra space) components, or if we think in terms of D-branes giving rise to these

fluxes via geometric transition, the D-branes fill up 4-d spacetime with remaining compo-

nents wrapping cycles in the extra space. The 32× 32 gamma matrices which generate the

Clifford algebra of Spin(1, 9) in 10-d are also decomposed as Γµ = γµ⊗1 and Γm = γ5⊗γm,

where γµ and γm are respectively 4 × 4 and 8 × 8 matrices which generate the algebras of

Spin(1, 3) and Spin(6) respectively. The spinor representations in 4-d and in 6-d are respec-

tively given by the eigenvalues of γ5 ≡ −iγ0γ1γ2γ3 and γ7 ≡ iγ1γ2γ3γ4γ5γ6. The positive

and the negative chirality projections of a spinor η in 6-d are written as η± = (1± γ7)η/2.

When type IIB theory is compactified over Calabi-Yau threefold, it gives N = 2 su-

persymmetry in 4-d. Let us denote the two 4-component Majorana spinors parameters for

the N = 2 supersymmetry transformations in 4-d by ζ1 and ζ2 with their respective 2-

component positive and negative chirality Weyl components ζ1
± and ζ2

± such that ζi
− = ζi

+
∗
.

Let us also denote the two Majorana-Weyl spinors of the same chirality for the supersym-

metry transformations in 10-d by ǫ1 and ǫ2. The 10-d spinors can then be decomposed as

ǫ1 = ζ1
+ ⊗ η+ + ζ1

− ⊗ η−, ǫ2 = ζ2
+ ⊗ η+ + ζ2

− ⊗ η−, (2.3)

where η± are 4-component Weyl spinors on Y such that η− = η+
∗. Our interest is in

backgrounds which preserve only N = 1 supersymmetry in four dimensions. On such

backgrounds, there is only one independent spinor in 4-d. Let us denote the positive

chirality component of this 4-d spinor by ζ+. The two positive chirality spinors ζ1
+ and

ζ2
+ are then complex-proportional to ζ+ and to each other on backgrounds with N = 1

supersymmetry. Let us write the relations as

ζ1
+ =

1

2
(α + β)ζ+, ζ2

+ =
1

2i
(α − β)ζ+, (2.4)

where α and β are complex parameters. Because we take the 4-d spacetime to be flat ex-

cept for the warp factor e2A(y) in the metric given by (2.2), the spinor ζ+ is constant with α

and β being functions of the coordinates on the extra space. We can rewrite the decompo-

sition (2.3) with the complex-proportionality coefficients absorbed in the spinors on Y as

ǫ1 = ζ+ ⊗ η1
+ + ζ− ⊗ η1

−, ǫ2 = ζ+ ⊗ η2
+ + ζ− ⊗ η2

−, (2.5)

where ηi
− = ηi

+
∗
. The spinors η1

+, η2
+ and η+ are then related as given by (1.1),

η1
+ = 1

2(α + β)η+ and η2
+ = 1

2i
(α − β)η+.

But a generic compactification of Y with structure group SO(6) ∼ SU(4) has no glob-

ally defined covariantly constant spinor and gives no supersymmetry. The spinor represen-

tation of SO(6) corresponds to the fundamental representation of SU(4) which decomposes

as 1 ⊕ 3 under SU(3). Thus there is one SU(3) singlet spinor on Y . In order to preserve

some supersymmetry, Y needs to have a reduced structure group and to preserve N = 1

supersymmetry the structure group on Y has to be reduced at least to SU(3). In that

case, we can take the η+ discussed above (and which appears in (1.1)) to be this SU(3)

singlet spinor. If Y were a Calabi-Yau threefold, then the manifold would have SU(3)
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holonomy and give N = 2 supersymmetry in four dimensions, and the globally invariant

spinor would be covariantly constant. However, on N = 1 supersymmetric backgrounds

with SU(3) structures with fluxes turned on, the globally invariant spinor η+ is not co-

variantly constant with respect to the usual Levi-Civita connection but with a connection

which includes torsion and the fluxes included.

The supersymmetry transformations of the gravitino and the dilatino fields in 10-d can

be expressed as, see [24] for instance,

δψM = ∇M ǫ −
1

4
( /H3)Mσ3 ǫ +

1

8
eΦ

(

/F 3σ
1 + i(/F 1 + /F 5)σ

2
)

ΓM ǫ, (2.6)

δλ = /∂Φ ǫ −
1

2
/H3σ

3 ǫ −
1

2
eΦ

(

/F 3σ
1 + 2i /F 1σ

2
)

ǫ, (2.7)

where σi are the 2×2 Pauli matrices which now act on the supersymmetry transformation

parameter ǫ with the two Majorana-Weyl spinors as components,

ǫ =

(

ǫ1

ǫ2

)

=

(

ζ+ ⊗ η1
+ + ζ− ⊗ η1

−

ζ+ ⊗ η2
+ + ζ− ⊗ η2

−

)

. (2.8)

The slash is for contraction with gamma matrices with the definition for contraction of

p − q number of components of a p-form,

(/ωp)M1···Mq =
1

(p − q)!
(ωp)M1···MqMq+1···MpΓ

[Mq+1 · · ·ΓMp] (2.9)

and ∇M is the covariant derivative. The combination ΓMδψM − δλ contains no R-R flux

and the two supersymmetry transformations given by (2.6) and (2.7) can be traded for (2.6)

and

ΓMδψM − δλ = /∇ ǫ − /∂Φ ǫ −
1

4
/H3σ

3 ǫ. (2.10)

Let us start with parameterizing the metric on Y as

ds2
6 = δmnGmGn, (2.11)

where Gm are real differential 1-forms which are expressed in terms of linear combinations

of the coordinate 1-forms dyn on Y with coefficients which are functions of y. We also

define the γ matrices in 6-d with respect to this parametrization of the metric such that

{γm, γn} = 2δmn. (2.12)

The supersymmetry transformations in terms of flux and torsion components in SU(3)

representations are conveniently written in complex basis. Let us define the complex 1-

forms2

Z1 = G1 + iG2, Z2 = G3 + iG4, Z3 = G5 + iG6 (2.13)

and their complex conjugates Z̄ ī = (Zi)∗. (The holomorphic/antiholomorphic indices i

and ī run over 1 to 3.) Here Gm and Zi are not closed. Demanding that the backgrounds

2The final expressions at the end of this section are for the coefficients in the supersymmetry transfor-

mations expanded in terms of these complex forms.
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preserve supersymmetry leads to constraints which make Y a complex manifold. Rewrit-

ing (2.11),

ds2
6 = δi j̄Z

iZ̄ j̄. (2.14)

We also define γ matrices with holomorphic/antiholomorphic indices γi and γ̄ ī in terms

of γm as

γi = (γ2m−1 + iγ2m)δi
m, γ̄ ī = (γ2m−1 − iγ2m)δī

m. (2.15)

Note that

{γi, γ̄ j̄} = 4δij̄ , {γi, γj} = 0, {γ̄ ī, γ̄ j̄} = 0. (2.16)

The supersymmetry variation (2.6) for M = µ gives Γµδψµ = 0 and, with the met-

ric (2.2) and recalling that the fluxes have only internal components,

/∂A ǫ −
1

4
eΦ(/F 3σ

1 + i(/F 1 + /F 5)σ
2) ǫ = 0. (2.17)

Using (2.8) and (1.1), (2.17) can be written in terms of the SU(3) invariant spinor on Y as

α/∂Aη+ −
i

4
eΦ(β /F 3 − α(/F 1 + /F 5))η+ = 0, (2.18)

β/∂Aη+ +
i

4
eΦ(α/F 3 − β(/F 1 + /F 5))η+ = 0, (2.19)

where the slashes are now for contractions with the γ matrices in 6-d. Note that the second

equation (2.19) can be obtained from the first (2.18) by interchanging α ↔ β and flipping

the signs of the R-R fluxes and this is the case throughout and, therefore, we will write

only one of such equations in the remaining part of this section. The variation (2.6) for

M = m gives
(

α∇m + ∂mα −
1

4
β( /H3)m

)

η+ +
i

8
eΦ(β /F 3 − α(/F 1 + /F 5))γmη+ = 0. (2.20)

Moreover, (2.10) gives

α( /∇ + 2/∂A + /∂ ln α − /∂Φ)η+ −
1

4
β /H3η+ = 0. (2.21)

The complex and Kähler structures on Y are determined by properties in the variations

of the fundamental 2-form, denoted by J , and the holomorphic 3-form, denoted by Ω.

Let us summarize the decompositions of the variations of J and Ω with components in

representations of SU(3) when Y has SU(3) structures. See [25] for instance for details.

We write J and Ω as

J =
1

2
Jij̄ Zi∧Z̄ j̄ =

i

2
δij̄Z

i∧Z̄ j̄, (2.22)

Ω =
1

6
ΩijkZ

i∧Zj∧Zk =
1

6
ǫijkZ

i∧Zj∧Zk = Z1∧Z2∧Z3. (2.23)

Note that J is a (1, 1) form and Ω is a (3, 0) form with respect to the holomorphic/antiholo-

morphic 1-forms. The variation dJ has components with (2, 1)⊕(1, 2)⊕(3, 0)⊕(0, 3) forms.

Moreover, dΩ has components with (3, 1) ⊕ (2, 2) forms; it does not have a (4, 0), since a
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complex 4-form vanishes in three complex dimensions. For Y with SU(3) structures, the

components can be broken down in representations of SU(3). The (3, 0)⊕(0, 3) forms in dJ

give components in the singlet representation. The (2, 1)⊕ (1, 2) forms give components in

the (6̄⊕3)⊕(6⊕3̄) representations, where the components in the 6̄ and the 6 representations

are the primitive parts (have no components of the form · · · ∧J and contracting them with

J gives zero). Our notation is such that the components in the 6 ⊕ 3̄ representations

in the 3-forms come from (1, 2) forms. The (3, 1) form in dΩ gives component in the 3̄

representation and the (2, 2) form gives components in the 8 ⊕ 1 representations. All in

all, the variations can be written as

dJ = −
3

2
Im(W

(1)
1 Ω̄) + (W

(3)
4 + W

(3̄)
4 ) ∧ J + (W

(6)
3 + W

(6̄)
3 ), (2.24)

dΩ = W
(1)
1 J2 + W

(8)
2 ∧ J + W 3̄

5 ∧ Ω, (2.25)

where the W ’s are the torsion components with the superscripts denoting the SU(3) repre-

sentations and the subscripts denoting five torsion classes. If Y is a Calabi-Yau manifold

with complex structure defined by (2.13), then both J and Ω are closed, dJ = 0 and dΩ = 0,

and all torsion classes vanish. Thus nonvanishing components of the torsion measure the

departure of the manifold from being Calabi-Yau. For Y to be a complex manifold, the

(3, 0) and (0, 3) forms in dJ and the (2, 2) forms in dΩ need to vanish (since a variation

on a complex manifold should raise the holomorphic and the antiholomorphic forms only

once and separately) which implies that W
(1)
1 and W

(8)
2 vanish. These constraints actually

follow from the supersymmetric conditions, without a need to be assumed a priori.

The 3-form fluxes, F3 and H3, have only internal components with (0, 3) and (1, 2)

forms and their conjugates and can be decomposed as dJ ,

H3 = −
3

2
Im(H

(1)
3 Ω̄) + (H

(3)
3 + H

(3̄)
3 ) ∧ J + (H

(6)
3 + H

(6̄)
3 ), (2.26)

F3 = −
3

2
Im(F

(1)
3 Ω̄) + (F

(3)
3 + F

(3̄)
3 ) ∧ J + (F

(6)
3 + H

(6̄)
3 ). (2.27)

The F5 part of the self-dual 5-form flux has only internal components and is written as

F5 = (F
(3)
5 + F

(3̄)
5 ) ∧ J ∧ J. (2.28)

The supersymmetry transformations given by (2.20) and (2.21) contain the covariant

derivative of the spinor which needs to be expressed in terms of torsion components in

SU(3) representations in order for both the flux and the torsion components to come in

symmetrically. The covariant derivative of η could be written, with the spinor normalized

to constant, as

∇mη = i(qmγ7 + qmnγn)η. (2.29)

Note that, in terms of holomorphic/antiholomorphic indices, qī ∼ 3̄, qij ∼ 3 ⊗ 3 = 6 ⊕ 3̄

and qij̄ ∼ 3 ⊗ 3̄ = 8 ⊕ 1. Thus qī, qij, qij̄ and their conjugates contain the same degrees of

freedom as W
(3̄)
5 , W

(3̄)
4 , W

(6)
3 , W

(8)
2 , W

(1)
1 and their conjugates. The relations between the

two sets of torsion components are given in [26, 1].
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The supersymmetry transformations given by (2.18)–(2.21) are expressed in terms of

the invariant spinor η+ with standard basis in terms of products of γ matrices. In particular,

the basis γ matrices in 6-d can be taken as

1, γm, γm1m2 , · · · , γm1···m6 . (2.30)

The supersymmetry transformations are conveniently written in a basis with coefficients

which are in representations of SU(3) such that the flux and the torsion components come

on the same footing by projecting them to a basis with elements η± and γmη±. The projec-

tion was done in [1]. A useful ingredient used in doing the projection and calculating the

coefficients was a characterization of the generalized complex structure in terms of pure spi-

nors [27] where the tensor product of the standard spinors is related to the pure spinors via

η± ⊗ η†± =
1

8
©©©e∓iJ , η+ ⊗ η†− = −

i

8
¡Ω, η− ⊗ η†+ = −

i

8
¶¶̄Ω. (2.31)

The J and the Ω in (2.31) are the fundamental 2-form and the holomorphic 3-form and

the slash is for contraction with γm, now after promoting the wedge product in a p-form

in each term to antisymmetric product of γ matrices,

wm1m2···mpG
m1 ∧ Gm2 ∧ · · · ∧ Gmp → wm1m2···mpγ

m1m2···mp . (2.32)

The slashed objects on the right hand sides in (2.31) are the pure spinors. The pro-

jection to the basis with components in η± and γmη± is then done by multiplying the

supersymmetry variations by η†± and η†±γm from the left, using the relation between the

standard spinors and the pure spinors, (2.31), mapping the sum of forms to the sum of

antisymmetric products of γ matrices, (2.32), and taking traces.

Finally, let us write the coefficients in the gravitino and the dilatino supersymmetry

transformations (2.18), (2.20) and (2.21) projected to the η± and γmη± basis, decomposed

in terms of the components of the fluxes and the torsion in SU(3) representations, and ex-

pressed in terms of holomorphic/antiholomorphic indices. Each coefficient needs to vanish

identically and using the coefficients in the supersymmetry transformations obtained in [1],3

Ω k̄
ij (αW

(3̄)
4 − iβH

(3̄)
3 )k̄ +

i

2
(αW

(6)
3 − iβH

(6)
3 )k̄l̄iΩ

k̄l̄
j

+
i

2
eΦ

(

Ω k̄
ij (αF

(3̄)
1 + 2αF

(3̄)
5 )k̄ − β(F

(6)
3 )k̄l̄(iΩ

k̄l̄
j)

)

= 0 , (2.33)

∂īα +
1

2

(

α(W
(3̄)
5 − W

(¯̄3)
4 ) − iβH

(3̄)
3

)

ī
= 0 , (2.34)

α∂īA +
i

4
eΦ

(

αF
(3̄)
1 − 2iβF

(3̄)
3 − 2αF

(3̄)
5

)

ī
= 0 , (2.35)

α∂ī(2A − Φ + log α) +
1

2

(

α(W
(3̄)
4 + W

(3̄)
5 ) − iβH

(3̄)
3

)

ī
= 0, (2.36)

(αW
(1)
1 + 3iβH

(1)
3 )ηīj + iα(W

(8)
2 )̄ij = 0 , (2.37)

βeΦF
(1)
3 = 0 (2.38)

iαW
(1)
1 + βH

(1)
3 = 0, (2.39)

3Some of the terms in (2.35) and (2.36) have coefficients and signs different from [1]. However, the

general equations we obtain in the next section reproduce the equations obtained in [1] as a specific case of

fixed phase of zero between α and β with F1 turned off.
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Here we have written only the independent constraints in terms of the components in the

6 ⊕ 3̄ ⊕ 1 ⊕ 8 representations which come from the (1, 2), (0, 3) and (2, 2) forms so that

the set of constraints can be solved readily. All the independent set of equations will be

written down in terms of these components and we will often refer only to these forms

and representations in our discussions. There is also a second set of equations, because

of the two sets of supersymmetry variations in (2.18)–(2.21) following from the two Weyl

components, which can be written down by exchanging the parameters α ↔ β and flipping

the sign of the R-R fluxes in all expressions above as we discussed earlier in this section.

3. General equations

In this section, we write down the general equations which solve the constraints from the

supersymmetry transformations given by (2.33)–(2.39). The ones in the 1 ⊕ 1, the 8 ⊕ 8

and the 6 ⊕ 6̄ sectors are the same as in [1]. The equations in the 3 ⊕ 3̄ sector involve the

equations which govern the running of the dilaton and the warp factor in addition to the

flux and the torsion components. The 3 ⊕ 3̄ sector is subtle and that is where we present

new and general equations which together with the equations in the 1 ⊕ 1, the 8 ⊕ 8 and

the 6⊕ 6̄ sectors allow to scan the moduli space of IIB backgrounds with SU(3) structures

and N = 1 supersymmetry.

3.1 The 1 ⊕ 1 and the 8 ⊕ 8 sectors

The equations in the 1⊕1 and the 8⊕8 sectors follow from the constrains given by (2.37)–

(2.39) together with the second set of constraints which can be read off with the change of

variables α ↔ β and F
(1)
3 → −F

(1)
3 ,

βeΦF
(1)
3 = 0, αeΦF

(1)
3 = 0, (3.1)

α(W
(8)
2 )̄ij = 0, β(W

(8)
2 )̄ij = 0, (3.2)

(αW
(1)
1 + 3iβH

(1)
3 )ηīj = 0, (βW

(1)
1 + 3iαH

(1)
3 )ηīj = 0, (3.3)

iαW
(1)
1 + βH

(1)
3 = 0 iβW

(1)
1 + αH

(1)
3 = 0. (3.4)

Solving the above constraints, we find the relations necessary to preserve N = 1 supersym-

metry with fluxes turned on (and, therefore, at least one of α or β nonzero4) in the 1 ⊕ 1

and the 8 ⊕ 8 sectors,

W
(1)
1 = 0, W

(8)
2 = 0, H

(1)
3 = 0, F

(1)
3 = 0. (3.5)

Recall that the vanishing of the singlet and the octet components of the torsion was nec-

essary in order to make Y complex. Now we see that each and every one of the singlet

components of the torsion and the fluxes and the octet component of the torsion need

to vanish identically. In other words, the flux and the torsion components in the singlet

representation cannot be arranged to balance on backgrounds with N = 1 supersymmetry.

4In fact, even more, α and β cannot both be constants on nontrivial N = 1 flux backgrounds, since the

fundamental 2-form and the holomorphic 3-form would both then be closed (and all fluxes would vanish

and the backgrounds would reduce to Calabi-Yau). More discussion about stationary points in the spinors

parameters space will be given in section 4.2.

– 10 –



J
H
E
P
1
0
(
2
0
0
7
)
0
8
2

3.2 The 6 ⊕ 6̄ sector

In this sector, we have components of the 3-form fluxes which need to balance with the W3

torsion in order to preserve N = 1 supersymmetry. In particular, (2.33) requires

(αW
(6)
3 − iβH

(6)
3 )k̄l̄(iΩ

k̄l̄
j) = β(F

(6)
3 )k̄l̄(iΩ

k̄l̄
j) (3.6)

and the second constraint is obtained with the change of variables α ↔ β and F
(6)
3 → −F

(6)
3 ,

(βW
(6)
3 − iαH

(6)
3 )k̄l̄(iΩ

k̄l̄
j) = −α(F

(6)
3 )k̄l̄(iΩ

k̄l̄
j) . (3.7)

These two constraints are solved to find two independent complex equations which relate

F
(6)
3 , H

(6)
3 and W

(6)
3 and were obtained in [1],

(α2 − β2)W
(6)
3 = 2αβeΦF

(6)
3 , (3.8)

(α2 + β2)W
(6)
3 = −2αβ ⋆6 H

(6)
3 , (3.9)

where the subscript in the Hodge star indicates that it is taken with respect to the metric

in the extra 6-d space. Recall that all the fluxes (except for the components in the second

term in the self-dual F̃5 = (1 + ⋆)F5) and the torsion have only internal components.

Combining (3.8) and (3.9) gives the relation between H
(6)
3 and F

(6)
3 ,

(α2 − β2)H
(6)
3 = (α2 + β2)eΦ ⋆6 F

(6)
3 . (3.10)

3.3 The 3 ⊕ 3̄ sector

This sector contains the equations for the running of the dilaton and the warp factor and

all the fluxes have components in the 3⊕ 3̄ representation. The supersymmetry conditions

in (2.34)–(2.36) together with the second set of constraints which can be read off with

the change of variables α ↔ β, F
(3̄)
1 → −F

(3̄)
1 , F

(3̄)
3 → −F

(3̄)
3 and F

(3̄)
5 → −F

(3̄)
5 give the

following constraints on the relations among the flux and the torsion components in the 3̄

representation, the running of the dilaton, the running of the warp factor, and the spinors

parameters α and β,

∂k̄α +
1

2
(α(W

(3̄)
5 − W

(3̄)
4 ) − iβH

(3̄)
3 )k̄ = 0, (3.11)

∂k̄β +
1

2
(β(W

(3̄)
5 − W

(3̄)
4 ) − iαH

(3̄)
3 )k̄ = 0, (3.12)

α∂k̄A +
i

4
eΦ(αF

(3̄)
1 − 2iβF

(3̄)
3 − 2αF

(3̄)
5 )k̄ = 0, (3.13)

β∂k̄A −
i

4
eΦ(βF

(3̄)
1 − 2iαF

(3̄)
3 − 2βF

(3̄)
5 )k̄ = 0, (3.14)

(αW
(3̄)
4 − iβH

(3̄)
3 )k̄ −

i

2
eΦ(αF

(3̄)
1 + 2αF

(3̄)
5 )k̄ = 0, (3.15)

(βW
(3̄)
4 − iαH

(3̄)
3 )k̄ +

i

2
eΦ(βF

(3̄)
1 + 2βF

(3̄)
5 )k̄ = 0, (3.16)

α∂k̄(2A − Φ + ln α) +
1

2
(α(W

(3̄)
4 + W

(3̄)
5 ) − iβH

(3̄)
3 )k̄ = 0, (3.17)

β∂k̄(2A − Φ + ln β) +
1

2
(β(W

(3̄)
4 + W

(3̄)
5 ) − iαH

(3̄)
3 )k̄ = 0. (3.18)
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There are a total of eight constraints above for eight components of fluxes, torsion, and

variations of the dilaton and the warp factor: F
(3̄)
5 , F

(3̄)
3 , F

(3̄)
1 , H

(3̄)
3 , W

(3̄)
5 , W

(3̄)
4 , ∂k̄Φ

and ∂k̄A. The objective is to find their relations to the spinors parameters α and β.

Solving the first two constraints (3.11) and (3.12) gives the same expression for H
(3̄)
3 as

does solving the last two constrains (3.17) and (3.18). Therefore, the above eight constrains

actually give only seven independent complex equations. The equations which solve the

constraints (3.11)–(3.18) are

eΦ

(

F
(3̄)
3 +

2iαβ

α2 + β2
F

(3̄)
1

)

=
2αβ

α2 + β2
(∂̄ ln α − ∂̄ ln β), (3.19)

eΦ

(

F
(3̄)
5 +

1

2
F

(3̄)
1

)

= −i(∂̄ ln α − ∂̄ ln β), (3.20)

H
(3̄)
3 =

2iαβ

α2 − β2
(∂̄ ln α − ∂̄ ln β), (3.21)

∂̄A +
i

2

α2 − β2

α2 + β2
eΦF

(3̄)
1 =

α2 − β2

2(α2 + β2)
(∂̄ ln α − ∂̄ ln β), (3.22)

∂̄Φ + i
α2 − β2

α2 + β2
eΦF

(3̄)
1 = −

4α2β2

α4 − β4
(∂̄ ln α − ∂̄ ln β), (3.23)

W
(3̄)
4 = −

α2 + β2

α2 − β2
(∂̄ ln α − ∂̄ ln β), (3.24)

W
(3̄)
5 = −

3α2 + β2

α2 − β2
∂̄ ln α +

α2 + 3β2

α2 − β2
∂̄ ln β, (3.25)

where the antiholomorphic index is now suppressed. The above equations are general and

allow to scan generic relations between the two Weyl spinors.

We can combine some of the equations to find relations between the different compo-

nents. We can, for instance, express F
(3̄)
1 in terms of other fluxes using (3.19) and (3.21),

2αβeΦF
(3̄)
1 = −(α2 − β2)H

(3̄)
3 + i(α2 + β2)eΦF

(3̄)
3 (3.26)

which implies that a nonzero F
(3̄)
1 with nonzero αβ requires that at least H

(3̄)
3 or F

(3̄)
3 be

nonzero and, therefore, both 3-form fluxes cannot be primitive. We can also relate ∂̄A, ∂̄Φ

and W
(3̄)
4 by combining their expressions,

2∂̄A − ∂̄Φ = −W
(3̄)
4 (3.27)

which, for instance, implies that a nonconstant warp factor with constant dilaton requires

the torsion component W 3̄
4 6= 0. On the other hand, if W 3̄

4 = 0, then we have ∂̄Φ = 2∂̄A.

The warp factor is directly related to the magnitudes of the spinors parameters. The

parametrization of ηi
+ in terms of η+ given by (1.1) gives

η1
+
†
η1
+ + η2

+
†
η2
+ =

1

2
(|α|2 + |β|2)η†+η+. (3.28)

Normalizing the invariant spinor such that η†+η+ = 1/2 and recalling that the 6-d spinors

η1
± were defined in terms of η+ with the warp factor which comes in the 4-d spinors absorbed

in, (3.28) can be set to eA/4. The warp factor is then related to α and β as [1, 20, 28]

A = ln(|α|2 + |β|2). (3.29)
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4. Specific classes of supergravity flows

We note that the equations given by (3.19)–(3.25) (except the one for W
(3̄)
5 ) are invariant

under rotations of both α and β by the same phase, α → eiδα and β → eiδβ. For W
(3̄)
5 ,

this rotation leads to W
(3̄)
5 → W

(3̄)
5 − 2i∂̄δ and the shift in W

(3̄)
5 arises only when δ is not

constant. We will take the phase of α to be a fixed value, and what matters is then the

magnitude of the phase between α and β rather than the overall orientation. So, we can take

α = |α|, β = |β|eiθ, (4.1)

where θ is real. The equations for all sectors are then invariant and depend not on the

overall phase but only on the phase between α and β. We also have from (3.29) that

A = ln(α2 + β2e−i2θ) which with the equation for ∂̄A given by (3.22) gives

∂̄ ln β =

(

α2−β2

2(α2+β2)
− 2α2

α2+β2e−2iθ

)

∂̄ ln α + 2iβ2e−2iθ

α2+β2e−2iθ ∂̄θ − i
2

α2−β2

α2+β2 eΦF
(3̄)
1

α2−β2

2(α2+β2) + 2β2e−2iθ

α2+β2e−2iθ

. (4.2)

With this, the equations given by (3.19)–(3.25) can be rewritten in terms of α, β, ∂̄ ln α

and ∂̄ ln θ. Since we need at least either one of α or β to be nonzero in order to have

nontrivial background with flux, we will take in our discussions that α 6= 0 while β could

vanish and write

β

α
= tan (w/2) eiθ, (4.3)

where w and θ are real.

Recall that α and β define the relations between the spinors, η1
+ = 1

2(α + β)η+ and

η2
+ = 1

2i
(α − β)η+. Thus η2

+/η1
+ = −i(α − β)/(α + β), and with (4.3),

η2
+

η1
+

= −i
α − β

α + β
= −i

1 − tan (w/2)eiθ

1 + tan (w/2)eiθ
. (4.4)

By varying both w and θ, and using appropriate ansatz for the fluxes and the metric

which accommodates the corresponding flow, one can scan the moduli space of type IIB

backgrounds with N = 1 supersymmetry. For generic values of w and θ, the ratio of the

two spinors has neither constant magnitude nor constant phase, the backgrounds involve

fluxes which are not imaginary self-dual, the 3-form fluxes are not primitive, and the dilaton

and the axion fields are not constants. Next we consider some specific classes of flows and

discuss their features and relations.

4.1 Flows with constant axion

Let us consider the case in which the axion field C0 is constant and set F
(3̄)
1 = 0. In this
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case, the equations in the 3 ⊕ 3̄ sector, (3.19)–(3.25) together with (3.29), become

eΦF
(3̄)
3 =

2αβ

α2 + β2
(∂̄ ln α − ∂̄ ln β), eΦF

(3̄)
5 = −i(∂̄ ln α − ∂̄ ln β), (4.5)

H
(3̄)
3 =

2iαβ

α2 − β2
(∂̄ ln α − ∂̄ ln β), W

(3̄)
4 = −

α2 + β2

α2 − β2
(∂̄ ln α − ∂̄ ln β), (4.6)

∂̄A =
α2 − β2

2(α2 + β2)
(∂̄ ln α − ∂̄ ln β), A = ln(|α|2 + |β|2), (4.7)

∂̄Φ = −
4α2β2

α4 − β4
(∂̄ ln α − ∂̄ ln β), W

(3̄)
5 = −

3α2+β2

α2−β2
∂̄ ln α+

α2+3β2

α2−β2
∂̄ ln β. (4.8)

Note that flows with constant axion but nonconstant dilaton have nonprimitive 3-form

fluxes. The equations in the 6 ⊕ 6̄ sector do not directly involve F1 and stay the same.

4.1.1 Spinors with a phase difference of π/2 (GMPT case)

Consider the specific case of a flow with constant axion and the relation between the two

spinors such that θ = 0. This case gives the equations obtained by Grana, Minasian, Petrini

and Tomasiello (GMPT) in [1]. The argument used in [1] to obtain the equations was a

gauge choice such that arg(α)+arg(β) = 0. As we see can see in the equations in [1], given

by (4.9)–(4.13) below, the ratio of the expression for W
(3̄)
5 to the expressions for all the other

components depends only on the phase between α and β. Once the overall phase is fixed

to a constant, we can write α and β as given by (4.1) without loss of generality. The gauge

choice with (4.1) is, then, equivalent to a phase of zero between α and β (and α and β being

real-proportional). Now we have from (4.4) that η2
+/η1

+ = i(tan(w/2) − 1)/(tan(w/2) + 1)

and the phase between the two spinors is a constant π/2. We then have from (3.29) that

A = ln(α2 +β2) which with the expression for ∂̄A in (4.7), or directly reading off from (4.2)

with θ = 0 and F
(3̄)
1 = 0, gives

∂̄ ln β = −
3α2 + β2

α2 + 3β2
∂̄ ln α. (4.9)

This in (4.5)–(4.8) gives

eΦF
(3̄)
3 =

8αβ

α2 + 3β2
∂̄ ln α, eΦF

(3̄)
5 = −

4i(α2 + β2)

α2 + 3β2
∂̄ ln α, (4.10)

H
(3̄)
3 =

8iαβ(α2 + β2)

(α2 + 3β2)(α2 − β2)
∂̄ ln α, W

(3̄)
4 = −

4(α2 + β2)2

(α2 + 3β2)(α2 − β2)
∂̄ ln α, (4.11)

∂̄A =
2(α2 − β2)

α2 + 3β2
∂̄ lnα, A = ln(α2 + β2), (4.12)

∂̄Φ = −
16α2β2

(α2 + 3β2)(α2 − β2)
∂̄ ln α, W

(3̄)
5 = −

2(3α2 + β2)

α2 − β2
∂̄ ln α. (4.13)

These are the equations obtained in [1], expressed in terms of α, β and ∂̄ ln α here. Thus

the equations written in [1] for the 3⊕ 3̄ sector are a specific case of the general equations

with a fixed phase of zero between α and β.
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4.1.2 Spinors with equal magnitude (BGMPZ case)

Consider the case in which the axion is constant and a fixed phase of θ = π/2 between

α and β. This gives the equations obtained by Butti, Grana, Minasian, Petrini, and

Zaffaroni (BGMPZ) in [2]. Note that, in this case, we have from (4.4) that η2
+/η1

+ =

− sin w− i cos w. Therefore, the two spinors have equal magnitude. The phase between the

spinors is tan−1(cot w) and varies along the flow. We can take α real and β pure imaginary.

In this case, (4.2) reduces to

∂̄ ln β = −
3α4 + 6α2β2 − β4

α4 − 6α2β2 − 3β4
∂̄ ln α. (4.14)

This in (4.5)–(4.8) gives

eΦF
(3̄)
3 =

8αβ(α2 − β2)

α4 − 6α2β2 − 3β4
∂̄ ln α, eΦF

(3̄)
5 = −

4i(α4 − β4)

α4 − 6α2β2 − 3β4
∂̄ ln α, (4.15)

H
(3̄)
3 =

8iαβ(α2 + β2)

α4 − 6α2β2 − 3β4
∂̄ ln α, W

(3̄)
4 = −

4(α2 + β2)2

α4 − 6α2β2 − 3β4
∂̄ ln α, (4.16)

∂̄A =
2(α2 − β2)2

α4 − 6α2β2 − 3β4
∂̄ ln α, A = ln(α2 − β2) (4.17)

∂̄Φ = −
16α2β2

α4 − 6α2β2 − 3β4
∂̄ ln α, W

(3̄)
5 = −

2(3α4 + 2α2β2 + 3β4)

α4 − 6α2β2 − 3β4
∂̄ ln α. (4.18)

These equations were written and used in [2] to study flows from the Klebanov-Strassler

solution [21] toward the Maldacena-Nunez solution [29, 30] using a metric and flux ansatz

given in [31].

4.2 Conformally Calabi-Yau flows

Conformally Calabi-Yau backgrounds are those for which the metric on the extra space

can be written as

ds2
6 = e2B(y)hmn(y)dymdyn,

where hmn(y) is a Calabi-Yau metric, and, therefore, one can make a conformal transfor-

mation to a Calabi-Yau metric. In order for the metric on Y to be conformally Calabi-Yau,

we need 3W
(3̄)
4 = 2W

(3̄)
5 , see [12] for instance. We see from (3.24) and (3.25) that this is

the case if

∂̄ ln β = −
3α2 − β2

α2 − 3β2
∂̄ ln α. (4.19)

The remaining condition we need to make Y conformally Calabi-Yau is the vanishing of the

torsion class in the 6⊕ 6̄ sector, W
(6)
3 = 0, which holds for β = 0 and α 6= 0 (for nontrivial

background with flux). Setting β = 0 in (4.19), we have ∂̄ ln β = −3∂̄ ln α. On the other

hand, using ∂̄ ln β given by (4.2) with β = 0,

∂̄ ln β = −3∂̄ ln α − ieΦF
(3̄)
1 . (4.20)
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Therefore, we need to have F
(3̄)
1 = 0. The equations in the 3⊕ 3̄ sector, (3.19)–(3.25), then

reduce to

W
(3̄)
4 = −4∂̄ ln α, W

(3̄)
5 = −6∂̄ lnα, F

(3̄)
3 = 0, H

(3̄)
3 = 0, F

(3̄)
1 = 0 (4.21)

F
(3̄)
5 = −4i∂̄ lnα, ∂̄Φ = 0, ∂̄A = 2∂̄ ln α. (4.22)

The equations in the 6 ⊕ 6̄ sector given by (3.8) and (3.9) also reduce, in this case, to

H
(6)
3 = eΦ ⋆6 F

(6)
3 , W

(6)
3 = 0. (4.23)

Note that we see from (4.22) that the running of the warp factor and the 5-form flux in

conformally Calabi-Yau flows are related as

∂̄A =
i

2
eΦF

(3̄)
5 . (4.24)

Therefore, conformally Calabi-Yau flows require that the 3-form fluxes be primitive,

F
(3̄)
3 = H

(3̄)
3 = 0, and have constant dilaton and constant axion.

Compactifications over Calabi-Yau threefolds give N = 2 supersymmetry in four di-

mensions. Nevertheless, let us see in terms of the fluxes and the spinors parameters how flux

backgrounds with N = 1 supersymmetry are necessarily non-Calabi-Yau. In order to have

a Calabi-Yau flow, the fundamental 2-form and the holomorphic 3-form need to be closed

and consequently all the torsion classes need to vanish. This requires setting ∂̄ ln α = 0 in

the equations for the conformally Calabi-Yau flows above. But, then, the 5-form flux van-

ishes. With (4.23) and because we have from the bosonic type IIB supergravity equations

that dF5 = F3 ∧H3, the 3-form fluxes vanish too (i.e., the components of the 3-form fluxes

in the 6⊕ 6̄ representation vanish in addition to the ones in the 3⊕ 3̄). This corresponds to

trivial background with a stationary point in the (α, β) spinors parameters space, all fluxes

vanishing, and the dilaton and the warp factor being constants. In other words, back-

grounds on such stationary points in the spinors parameters space reduce to Calabi-Yau.

4.3 Flows with constant dilaton

We see from the equation for the running of the dilaton given by (3.23) that the dilaton is

a constant, ∂̄Φ = 0, for flows such that

4α2β2∂̄ ln β = 4α2β2∂̄ ln α + ieΦ(α2 − β2)2F
(3̄)
1 (4.25)

which with (3.19)–(3.25) gives

2αβF
(3̄)
3 + i(α2 + β2)F

(3̄)
1 = 0, (4.26)

4α2β2F
(3̄)
5 +(α4 + β4)F

(3̄)
1 = 0, 2αβH

(3̄)
3 − eΦ(α2 − β2)F

(3̄)
1 = 0, (4.27)

8α2β2∂̄A + ieΦ(α4 − β4)F
(3̄)
1 = 0, A = ln(|α|2 + |β|2) (4.28)

4α2β2W
(3̄)
4 −ieΦ(α4−β4)F

(3̄)
1 = 0, (4.29)

4α2β2W
(3̄)
5 − ieΦ(α4 + 2α2β2 − 3β4)F

(3̄)
1 = −8α2β2∂̄ ln α. (4.30)

Note that flows with constant dilaton but nonconstant axion have nonprimitive 3-form

fluxes.
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This class of flows with constant dilaton contains the specific case of β = 0 or α = 0

with F
(3̄)
1 = 0 discussed in [2]. For the specific case of β = 0 and F

(3̄)
1 = 0, we use (4.2)

in (3.19)–(3.29), with Φ = 0, and the equations in the 3⊕ 3̄ sector reduce to the ones given

by (4.21) and (4.22). Thus flows with constant dilaton and constant axion require that the

3-form fluxes in the 3 ⊕ 3̄ representation vanish (the 3-form fluxes be primitive), and the

background be conformally Calabi-Yau. We also note that backgrounds with only F5 flux

fall in this class with all components of the 3-form fluxes set to zero and the running of

the warp factor related to the 5-form flux as given by (4.24).

However, we note from the equations above that there is a much larger region of

parameters space with nonzero F
(3̄)
1 , nonzero components of the 3-form fluxes in the 3⊕ 3̄

representation and nonzero α and β which gives flows with constant dilaton.

4.4 Flows with imaginary self-dual 3-form flux

Now we like to see features of flows with imaginary self-dual combination of the 3-form

fluxes. This constraint is often assumed in IIB flux compactifications, for instance in [6].

Consider the combination of the 3-form fluxes

G3 = F3 − ie−ΦH3. (4.31)

The 3-form combination G3 is imaginary self-dual if ⋆6G3 = iG3 which implies

⋆6H3 = −eΦF3. (4.32)

Noting from (2.26) and (2.27) that H3 ⊃ H
(3̄)
3 ∧ J and F3 ⊃ F

(3̄)
3 ∧ J , the imaginary

self-duality constraint implies that for the components in the 3̄ representation,

⋆6(H
(3̄)
3 ∧ J) = −eΦF

(3̄)
3 ∧ J. (4.33)

The imaginary self-duality constraint for the components in the 6 representation, ⋆6H
(6)
3 =

−eΦF
(6)
3 , together with (3.10) gives

α2 + β2

α2 − β2
= 1. (4.34)

Now using the equation for the components in the 3̄ representation given by (3.19)

and (3.21),

H
(3̄)
3 = ieΦ α2 + β2

α2 − β2
F

(3̄)
3 = ieΦF

(3̄)
3 , (4.35)

where we have used (4.34) in the last step. Using (4.35) in (4.33),

⋆6(H
(3̄)
3 ∧ J) = iH

(3̄)
3 ∧ J. (4.36)

On the other hand, taking the Hodge star directly,

⋆6(H
(3̄)
3 ∧ J) = −iH

(3̄)
3 ∧ J. (4.37)

In taking the Hodge star, we used the fact that the components of the total fluxes, H3 and

F3, are real.
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Thus it follows from (4.36) and (4.37) that H
(3̄)
3 = −H

(3̄)
3 . Similarly, repeating the

same proof for F3, we need F
(3̄)
3 = −F

(3̄)
3 . Therefore, the imaginary self-duality constraint

implies that the components of the 3-form fluxes in the 3 ⊕ 3̄ representation must vanish.

For both H
(3̄)
3 and F

(3̄)
3 to vanish, we see from (3.19), (3.21) and the equations in the 6⊕ 6̄

that we need αβ = 0. But in order to have nontrivial flow with flux, we need at least either

one of α or β to be nonzero. We can take β = 0 and α 6= 0. Putting β = 0 in (4.2), we find

∂̄ ln α − ∂̄ ln β = 4∂̄ ln α + ieΦF
(3̄)
1 . (4.38)

Using (4.38) in the equations in the 3 ⊕ 3̄ sector (3.19)–(3.25),

eΦF
(3̄)
3 = H

(3̄)
3 = 0, eΦF

(3̄)
5 = −4i∂̄ ln α +

1

2
eΦF

(3̄)
1 , (4.39)

W
(3̄)
4 = −4∂̄ ln α − ieΦF

(3̄)
1 , W

(3̄)
5 = −6∂̄ ln α (4.40)

∂̄Φ = −ieΦF
(3̄)
1 , ∂̄A = 2∂̄ ln α. (4.41)

In addition, the equations in the 6 ⊕ 6̄ sector reduce to H
(6)
3 = eΦ ⋆6 F

(6)
3 and W

(6)
3 = 0.

For constant axion, we have 3W
(3̄)
4 = 2W

(3̄)
5 in addition to W

(6)
3 = 0. Therefore, flows

with imaginary self-dual G3 and constant axion are conformally Calabi-Yau. Moreover, for

flows with imaginary self-dual G3 and constant axion, the dilaton is constant. Note that

the dilaton-axion coupling ie−Φ + iC0 is constant for flows with imaginary self-dual G3.

Similar statements can be made for imaginary anti-self-dual fluxes (⋆6G3 = −iG3) with

corresponding dilaton-axion coupling coefficient −ie−Φ + C0.

The Klebanov-Strassler solution is an example with constant axion, constant dilaton,

and imaginary self-dual 3-form flux on a conformally Calabi-Yau background.

4.5 Flows with spinors of fixed ratio

The supersymmetry transformations simplify and the equations are readily found for the

special cases of α = 0, β = 0, β = ±α or β = ±iα. Now we like to consider the more

general case of β/α = constant. Let us write

β

α
= c, (4.42)

where c is a complex constant. The relations between the spinors given by (1.1) then

become

η1
+ =

1

2
α(1 + c)η+, η2

+ =
1

2i
α(1 − c)η+,

η2
+

η1
+

= −i
1 − c

1 + c
. (4.43)

We can find ∂̄ ln α − ∂̄ ln β using (4.42) and the expressions for ∂̄A and A given by (3.22)

and (3.29), or read it off from (4.2),

∂̄ ln β = ∂̄ ln α −
2∂̄ ln α + i

2
1−c2

1+c2
eΦF

(3̄)
1

i
2

1−c2

1+c2
+ 2|c|2

1+|c|2

. (4.44)

The equations in the 3 ⊕ 3̄ sector then follow from (4.42) and (4.44) in (3.19)–(3.25)

and (3.29). The equations in the 6 ⊕ 6̄ sector also follow from (4.42) in (3.8) and (3.9).
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Let us consider the more specific case of nonzero c with both α and β nonzero. In this

case, we have ∂̄ ln β − ∂̄ ln α = 0 and the equations in the 3 ⊕ 3̄ sector reduce to

F
(3̄)
3 = −

2iαβ

α2 + β2
F

(3̄)
1 , F

(3̄)
5 = −

1

2
F

(3̄)
1 , H

(3̄)
3 = 0, (4.45)

∂̄A = −
i

2

α2 − β2

α2 + β2
eΦF

(3̄)
1 , A = ln(|α|2 + |β|2), (4.46)

∂̄Φ = −i
α2 − β2

α2 + β2
eΦF

(3̄)
1 , W

(3̄)
4 = 0, W

(3̄)
5 = −2 ∂̄ ln α. (4.47)

Moreover, it follows from (4.44) and ∂̄ ln β − ∂̄ ln α = 0 that

eΦF
(3̄)
1 = 4i

1 + c2

1 − c2
∂̄ ln α. (4.48)

With (4.48), (4.45)–(4.47) reduce to

eΦF
(3̄)
3 = −

8c

c2 − 1
∂̄ ln α, eΦF

(3̄)
5 =

2i(c2 + 1)

c2 − 1
∂̄ ln α, (4.49)

∂̄A = 2∂̄ ln α, ∂̄Φ = 4∂̄ lnα, W
(3̄)
5 = −2 ∂̄ ln α, (4.50)

H
(3̄)
3 = 0, W

(3̄)
4 = 0. (4.51)

The equations in the 6 ⊕ 6̄ sector given by (3.8) and (3.9) also reduce to

(1 − c2)W
(6)
3 = 2ceΦF

(6)
3 , (1 + c2)W

(6)
3 = −2ic ⋆6 H

(6)
3 . (4.52)

Note that this specific class of flows involves nonprimitive F3 flux while the H3 flux is prim-

itive. Moreover, the flows of the fields in the 3̄ sector are driven by the W
(3̄)
5 component of

the torsion while W
(3̄)
4 = 0. For the 3-form fluxes in the 6 representation, H

(6)
3 6= eΦ ⋆6 F

(6)
3

and the difference is driven by the W
(6)
3 component of the torsion. Thus the 3-form fluxes

do not give imaginary self-dual combination, the background geometry is not conformally

Calabi-Yau, and the dilaton is not constant. The Maldacena-Nunez solution [29] is an

example in this class with c = i. In this case, F
(3̄)
1 = 0 and F

(3̄)
5 = 0 while F

(3̄)
3 , the dilaton

and the warp factor run and are driven by nonzero W
(3̄)
5 torsion. Moreover, H

(6)
3 = 0 while

F
(6)
3 is balanced by W

(6)
3 .

4.6 Flows between spinors with relations of types A, B and C

As we mentioned in the introduction and we saw in some of the specific classes of flows in

previous sections, the equations significantly simplify for the special values of the param-

eters β = 0 or α = 0, β = ±α and β = ±iα and these have been extensively discussed in

the literature. The case with β = ±α, where one of the spinors vanishes, is called type A.

The case in which β = 0 or α = 0 and the two spinors differ only by a factor of i is called

type B. The other case with β = ±iα is referred to as type C. The Klebanov-Strassler

solution [21] falls in type B and the Maldacena-Nunez solution [29, 30] falls in type C.

Interpolating flows between types A, B and C were studied in [32, 20, 1, 2, 33]. Some

relations between the fluxes and the spinors were obtained in [32] and more relations
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involving a holomorphic function as additional parameter were obtained in [33]. Moreover,

as we have discussed in sections 2 and 3.1, the vanishing of the singlet and the octet

components of the torsion and the singlet components of the fluxes is related to the fact

that type IIB compactifications which preserve supersymmetry are complex and this was

shown in [20, 1, 2, 33]. The equations in the 6 ⊕ 6̄ sector were obtained, as we discussed

in sections 1 and 3.2, in [1]. The only self-contained explicit set of relations we know of

are the ones in [1] which hold for spinors with a phase of π/2 in between as we showed

in section 4.1.1 and the ones in [2] and discussed in section 4.1.2 which have spinors with

equal magnitude and the F1 flux turned off in both cases. The equations in [2] were

used to study interpolating flows between the Klebanov-Strassler solution in type B and

the Maldacena-Nunez solution in type C using a metric and flux ansatz given in [31], as

discussed in section 4.1.2, and numerical solutions were obtained.

As we have pointed out in sections 1 and 3, the new and general sets of equations we

have presented here are the ones in the 3⊕ 3̄ sector and these equations govern the running

of the dilaton and the warp factor and involve all the F1, F3, F5 and H3 fluxes. It could

be interesting to investigate the relations between the general equations we have written

here which accommodate two arbitrary complex-proportional spinors and the constraints

for N = 1 supersymmetry from work based on SU(2) and SU(3) × SU(3) structures with

two singlet spinors in [20, 34, 19]. Recall that in section 4.2 we started with the general

equations and arrived at the equations which govern conformally Calabi-Yau flows. Note

that the final relations in this class correspond to type B which has been extensively studied

and that this type has imaginary self-dual 3-from flux was found in [32, 20, 1, 2, 33]. We

also see that the special value of c = i discussed in section 4.5 coincides with the type C case

and that this type has nonprimitive 3-form fluxes was shown in [32, 20, 1, 2, 33]. Here we

found a whole class of flows with constant ratio η2
+/η1

+ in section 4.5 and type C is just one

particular example. It was also shown in [1, 2] that type B has constant dilaton. Here, as we

saw in section 4.3, we found a large class of additional backgrounds with constant dilaton.

Moreover, in section 4.4 we showed that there is a large class of flows with imaginary

self-dual 3-form flux with the F1 flux turned on. We also showed that all conformally

Calabi-Yau backgrounds have imaginary self-dual 3-form flux and that flows with imaginary

self-dual 3-form have constant dilaton-axion coupling. Moreover, we showed that flows with

constant axion, constant dilaton, and nonconstant warp factor are conformally Calabi-Yau.

The important point here in our discussions of the specific classes of flows is showing the

generality of some of the relations found elsewhere and how with the relations we have

found here a unified picture in terms of a set of few independent relations, which imply

numerous other relations, can be developed as we will summarize and discuss in section 5.

The key features in the general equations we have presented here are, first, the equa-

tions scan all phases and magnitudes of the two spinors. Therefore, flows between types

A, B and C backgrounds can be done along different directions with changing phase be-

tween the two spinors and, more generally, the equations describe flows in the whole spinors

parameters space which includes much larger backgrounds. Second, the equations are com-

plete and explicit for all components of the fluxes, the torsion, the running of the dilaton and

the warp factor and can be readily used to study flows systematically or to find additional
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features and relations. This is important since one needs to solve all the equations in all

sectors simultaneously when studying a specific background using a metric and flux ansatz.

5. Conclusions and discussions

We have presented the general and explicit equations which solve the supersymmetry trans-

formations with two arbitrary complex-proportional Weyl spinors on type IIB backgrounds

with N = 1 supersymmetry and SU(3) structures. These equations allow to study generic

flows systematically with any of the fluxes turned on.

The equations can be used to read off and prove some features of N = 1 supersymmetric

type IIB backgrounds with SU(3) structures. For instance,

• The flux and the torsion components in the singlet representation (the ones in the

(0, 3) and (3, 0) forms) cannot balance each other and the singlet components of the

3-form fluxes must vanish identically.

• Flows with constant axion, constant dilaton and nonconstant warp factor are confor-

mally Calabi-Yau.

• Conformally Calabi-Yau flows have imaginary self-dual 3-form flux.

• Flows with imaginary self-dual 3-form flux have primitive 3-form fluxes.

• Flows with imaginary self-dual 3-form flux have constant dilaton-axion coupling co-

efficient τ = ie−Φ + C0.

Moreover, other statements could be deduced from the above. For instance, flows with

imaginary self-dual 3-form flux and constant axion have constant dilaton. Flows with imagi-

nary self-dual 3-form flux and constant dilaton have constant axion. Flows with constant

axion and nonconstant dilaton have nonprimitive 3-form flux. Flows with constant dilaton

and nonconstant axion have nonprimitive 3-form flux. Conformally Calabi-Yau flows with

constant axion have constant dilaton. Some of these statements are familiar. Here, all the

above relations follow and are proved using the equations. Some combinations of features

listed here are often assumed in simplifying and analyzing IIB backgrounds. The relations

could be helpful in distinguishing independent assumptions on backgrounds with N = 1

supersymmetry.

The richness of the flows which could be systematically studied using the equations is

worth emphasizing. A background geometry may have different nonzero flux components

along different directions and flows from one class to another are possible. A starting

point in looking for explicit solutions may be picking up a particular direction in the

spinors parameters space and writing down a metric and flux ansatz which accommodates

the corresponding flow. Particularly interesting could be gravity theories which are dual

to gauge theories with physically interesting renormalization group flows such as pure

confining gauge theories and those with flows suitable for inflationary cosmology.

For instance, the equations for the specific case in which the two spinors have equal

magnitude (θ = π/2) were used in [2] to study a flow from the Klebanov-Strassler solu-

tion [21] toward the Maldacena-Nunez solution [29] using a metric and flux ansatz given
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in [31]. However, it was learned that the flow hits a singularity where flux and torsion

components blow up as one gets closer to a point where the Maldacena-Nunez solution is

located in the (α, β) parameters space. This indicates to us that the flow with a fixed

phase of θ = π/2 and the ansatz in [31] is not suitable. In fact, we can see that the relation

between ∂̄ ln β and ∂̄ lnα given by (4.14) (and thus the relation between the two spinors)

hits a singularity on this direction. This can be avoided with flows along different directions

using the general equations we have presented here with appropriate flux and metric ansatz.

The equations should also be useful to study supergravity flows with corrections to

the anomalous mass dimension in the Klebanov-Strassler solution as the flow with the

corrections included does not occur along a fixed phase between the spinors if the axion

is constant or requires turning on the F1 flux [22]. This could be interesting because the

corrections lead to distinct features in the warp factor and could be used to construct

cosmological models which might possibly allow to probe stringy signatures from the early

universe. The corrections make the dilaton run, and therefore, the background involves

3-form fluxes which do not form imaginary self-dual combination if the axion is constant.

In addition, the equations may be used to check if background solutions obtained

through other means preserve N = 1 supersymmetry.

The backgrounds we have studied preserve N = 1 supersymmetry. Although su-

persymmetry can be easily broken by imbalance among the components of the fluxes, the

torsion, the dilaton and the warp factor in any one of the equations, the SU(3) singlet com-

ponents of the 3-form fluxes seem to be natural candidates for breaking supersymmetry by

flux. These components cannot be balanced by torsion as we have seen in the equations in

the 1⊕ 1 sector. Consequently, F
(1)
3 6= 0 or H

(1)
3 6= 0 automatically breaks supersymmetry.

Another possibility for breaking supersymmetry is to turn on both imaginary self-dual and

imaginary anti-self-dual fluxes which preserve different N = 1 subalgebras of the parent

N = 2 type IIB theory compactified on Calabi-Yau manifold. A possibility for achieving

metastable geometric configurations by wrapping D5- and anti-D5-branes on 2-spheres in-

side Calabi-Yau manifolds (which turn on imaginary self-dual and imaginary anti-self-dual

fluxes respectively after geometric transition) was discussed in [35]. The equations we have

here could be useful in searching for stable flux vacua with supersymmetry softly broken.

It could be interesting to investigate how the gravitino mass varies in warped compactifica-

tions with supersymmetry softly broken, as in the study in [36] for instance, since the mass

of the gravitino is an important parameter related to the Hubble constant when applying

supergravity backgrounds to construct cosmological models, see [37] for instance.

Finally, we would like to reemphasize that the equations should be useful in systemat-

ically searching for supergravity flows and vacua suitable for physical applications such as

early universe cosmology, supersymmetry breaking, and gravity approaches to QCD, since

only a very tiny subset of backgrounds has thus far been closely explored.
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1 ⊕ 1 and 8⊕ 8 sectors

W
(1)
1 = 0, W

(8)
2 = 0, F

(1)
3 = 0, H

(1)
3 = 0

6⊕ 6̄ sector

(α2 − β2)W
(6)
3 = 2αβeΦF

(6)
3

(α2 + β2)W
(6)
3 = −2αβ ⋆6 H

(6)
3

3⊕ 3̄ sector

eΦ
(

F
(3̄)
3 + 2iαβ

α2+β2 F
(3̄)
1

)

= 2αβ
α2+β2 (∂̄ ln α − ∂̄ ln β)

eΦ
(

F
(3̄)
5 + 1

2F
(3̄)
1

)

= −i(∂̄ ln α − ∂̄ ln β)

H
(3̄)
3 = 2iαβ

α2−β2 (∂̄ ln α − ∂̄ ln β)

∂̄Φ + iα2−β2

α2+β2 eΦF
(3̄)
1 = − 4α2β2

α4−β4 (∂̄ ln α − ∂̄ ln β)

∂̄A + i
2

α2−β2

α2+β2 eΦF
(3̄)
1 = α2−β2

2(α2+β2)
(∂̄ ln α − ∂̄ ln β), A = ln(|α|2 + |β|2)

W
(3̄)
4 = −α2+β2

α2−β2 (∂̄ ln α − ∂̄ ln β)

W
(3̄)
5 = −3α2+β2

α2−β2 ∂̄ ln α + α2+3β2

α2−β2 ∂̄ ln β

Table 1: General equations.

A. Summary of the general equations

Here we summarize the general equations for type IIB backgrounds which preserve N =

1 supersymmetry on generalized Calabi-Yau with SU(3) structures with all F1, F3, F5

and H3 fluxes turned on and arbitrary relation between the two complex-proportional

Weyl spinors. The torsion components come in the variations of the fundamental 2-form,

dJ = −3
2Im(W

(1)
1 Ω̄) + (W

(3)
4 + W

(3̄)
4 ) ∧ J + (W

(6)
3 + W

(6̄)
3 ) and the holomorphic 3-form,

dΩ = W
(1)
1 J2 + W

(8)
2 ∧ J + W

(3̄)
5 ∧ Ω. The components of the 3-form fluxes come in

H3 = −3
2Im(H

(1)
3 Ω̄) + (H

(3)
3 + H

(3̄)
3 )∧ J + (H

(6)
3 + H

(6̄)
3 ) and F3 = −3

2Im(F
(1)
3 Ω̄) + (F

(3)
3 +

F
(3̄)
3 )∧ J + (F

(6)
3 + H

(6̄)
3 ). The self-dual 5-form flux is written as F̃5 = (1 + ⋆)F5 with F5 =

(F
(3)
5 +F

(3̄)
5 )∧J ∧J . The 1-form flux is decomposed as F1 = F

(3̄)
1 +F

(3)
1 . The superscripts

denote the SU(3) representations. The metric on the ten dimensional spacetime is written

as ds2
10 = e2A(y)ηµνdxµdxν +ds2

6(y) and the metric on the extra space is expressed in terms

of complex 1-forms with holomorphic/antiholomorphic indices as ds2
6 = δij̄Z

iZ̄ j̄. The

parameters α and β are complex functions of the coordinates on the extra space and come

in the relations between the two complex-proportional Weyl spinors η1,2
+ and the SU(3)

invariant spinor η+ on the generalized Calabi-Yau, η1
+ = 1

2(α+β)η+ and η2
+ = 1

2i
(α−β)η+.

The equations which describe the balance among the components of the fluxes, the dilaton,

the warp factor and the torsion in terms of the complex parameters α and β such that N = 1

supersymmetry is preserved are summarized in table 1.
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